#include "Header.h" #include using namespace Eigen; Solver::Solver(double _A, double _B, double _C, double _D, int _N, int _l, int _u) { A = _A, B = _B, C = _C, D = _D, N = _N; upper = _u, lower = _l; L = upper - lower; dx = L / N; } void Solver::Execute_Linear(double val1, double val2) { MatrixXd local = MatrixXd::Zero(2, 2); VectorXd local_load(2); local(0, 0) = -A / dx - B / 2. + C * dx / 3.; local(0, 1) = A / dx + B / 2. + C * dx / 6.; local(1, 0) = A / dx - B / 2. + C * dx / 6.; local(1, 1) = -A / dx + B / 2. + C * dx / 3.; local_load(0) = -D * dx / 2.; local_load(1) = -D * dx / 2.; MatrixXd ansamb = MatrixXd::Zero(N + 1, N + 1); VectorXd global_load = VectorXd::Zero(N + 1); // Ансамблирование for (int elem = 0; elem < N; ++elem) { int node_i = elem; int node_j = elem + 1; ansamb(node_i, node_i) += local(0, 0); ansamb(node_i, node_j) += local(0, 1); ansamb(node_j, node_i) += local(1, 0); ansamb(node_j, node_j) += local(1, 1); global_load(node_i) += local_load(0); global_load(node_j) += local_load(1); } #if DEBUG std::cout << std::endl << "Before:" << std::endl; std::cout << "Ansamb matrix:\n" << ansamb << std::endl; std::cout << "Ansamb load vector:\n" << global_load << std::endl; #endif double u_right = val2; // Clear first and last rows ansamb.row(0).setZero(); ansamb.row(N).setZero(); // u'(0) = u(0) ansamb(0, 0) = dx + 1; ansamb(0, 1) = -1; global_load(0) = 0; // u(10) = u_right = 5 ansamb(N, N) = 1; global_load(N) = u_right; #if DEBUG std::cout << "\nAfter:" << std::endl; std::cout << "Modified matrix:\n" << ansamb << std::endl; std::cout << "Modified load vector:\n" << global_load << std::endl; #endif VectorXd solution = ansamb.fullPivLu().solve(global_load); std::cout << "\nSolution:" << std::endl; std::cout << solution << std::endl; std::ofstream file("matrix_linear.txt"); for (int i = 0; i < N; i++) { file << solution(i) << ' '; } file << std::endl; } void Solver::Execute_Cubic(double val1, double val2) { int mat_dim = 1 + N * 3; Eigen::MatrixXd Amat(mat_dim, mat_dim); Eigen::VectorXd b(mat_dim); Amat.setZero(); b.setZero(); // Assemble matrix for (int i = 0; i < mat_dim - 3; i += 3) { Amat(i, i + 0) -= A * 37.0 / 10.0 / dx; Amat(i, i + 1) -= A * (-189.0) / 40.0 / dx; Amat(i, i + 2) -= A * 27.0 / 20.0 / dx; Amat(i, i + 3) -= A * (-13.0) / 40.0 / dx; Amat(i + 1, i + 0) -= A * (-189.0) / 40.0 / dx; Amat(i + 1, i + 1) -= A * 54.0 / 5.0 / dx; Amat(i + 1, i + 2) -= A * (-297.0) / 40.0 / dx; Amat(i + 1, i + 3) -= A * 27.0 / 20.0 / dx; Amat(i + 2, i + 0) -= A * 27.0 / 20.0 / dx; Amat(i + 2, i + 1) -= A * (-297.0) / 40.0 / dx; Amat(i + 2, i + 2) -= A * 54.0 / 5.0 / dx; Amat(i + 2, i + 3) -= A * (-189.0) / 40.0 / dx; Amat(i + 3, i + 0) -= A * (-13.0) / 40.0 / dx; Amat(i + 3, i + 1) -= A * 27.0 / 20.0 / dx; Amat(i + 3, i + 2) -= A * (-189.0) / 40.0 / dx; Amat(i + 3, i + 3) -= A * 37.0 / 10.0 / dx; Amat(i + 0, i + 0) += B * (-1.0) / 2.0; Amat(i + 0, i + 1) += B * 57.0 / 80.0; Amat(i + 0, i + 2) += B * (-3.0) / 10.0; Amat(i + 0, i + 3) += B * 7.0 / 80.0; Amat(i + 1, i + 0) += B * (-57.0) / 80.0; Amat(i + 1, i + 2) += B * 81.0 / 80.0; Amat(i + 1, i + 3) += B * (-3.0) / 10; Amat(i + 2, i + 0) += B * 3.0 / 10.0; Amat(i + 2, i + 1) += B * (-81.0) / 80.0; Amat(i + 2, i + 3) += B * 57.0 / 80.0; Amat(i + 3, i + 0) += B * (-7.0) / 80.0; Amat(i + 3, i + 1) += B * 3.0 / 10.0; Amat(i + 3, i + 2) += B * (-57.0) / 80.0; Amat(i + 3, i + 3) += B * 1.0 / 2.0; } // Assembdxe vector for (int i = 0; i < mat_dim - 3; i += 3) { b(i) -= D * dx / 8.0; b(i + 1) -= D * 3.0 * dx / 8.0; b(i + 2) -= D * 3.0 * dx / 8.0; b(i + 3) -= D * dx / 8.0; } Amat.row(0).setZero(); Amat(0, 0) = dx / 3.0 + 1; Amat(0, 1) = -1; b(0) = 0; Amat.row(mat_dim - 1).setZero(); Amat(mat_dim - 1, mat_dim - 1) = 1; b(mat_dim - 1) = val2; // Решение системы VectorXd solution = Amat.colPivHouseholderQr().solve(b); std::cout << "\nSolution:" << std::endl; std::cout << solution << std::endl; std::ofstream file("matrix_cubic.txt"); for (int i = 0; i < solution.size(); i++) { file << solution(i) << ' '; } file << std::endl; }