Temporary way of cubic elements coordinates eval

This commit is contained in:
2025-09-21 22:27:43 +03:00
parent e53cef771a
commit dc0df855d7

View File

@@ -2,8 +2,8 @@
#include <Eigen/Dense>
using namespace Eigen;
Solver::Solver(double _A, double _B, double _C, int _N, int _l, int _u) {
A = _A, B = _B, C = _C, N = _N;
Solver::Solver(double _A, double _B, double _C, double _D, int _N, int _l, int _u) {
A = _A, B = _B, C = _C, D = _D, N = _N;
upper = _u, lower = _l;
L = upper - lower;
dx = L / N;
@@ -77,90 +77,75 @@ void Solver::Execute_Linear(double val1, double val2) {
}
void Solver::Execute_Cubic(double val1, double val2) {
// Локальная матрица жесткости (4x4)
MatrixXd local = MatrixXd::Zero(4, 4);
local(0, 0) = -37. * A / (10 * dx) - B / 2.;
local(0, 1) = 189. * A / (40 * dx) + 57. * B / 80.;
local(0, 2) = -27. * A / (20 * dx) - 3. * B / 10.;
local(0, 3) = 13. * A / (40. * dx) + 7. * B / 10.;
local(1, 0) = 189. * A / (40 * dx) - 57. * B / 80.;
local(1, 1) = -54. * A / (5 * dx);
local(1, 2) = 297. * A / (40. * dx) + 81. * B / 80.;
local(1, 3) = -27 * A / (20. * dx) - 3. * B / 10.;
int mat_dim = 1 + N * 3;
Eigen::MatrixXd Amat(mat_dim, mat_dim);
Eigen::VectorXd b(mat_dim);
Amat.setZero();
b.setZero();
local(2, 0) = -27. * A / (20. * dx) + 3. * B / 10.;
local(2, 1) = 297. * A / (40. * dx) - 81. * B / 80.;
local(2, 2) = -54. * A / (5. * dx);
local(2, 3) = 189. * A / (40. * dx) + 57. * B / 80.;
// Assemble matrix
for (int i = 0; i < mat_dim - 3; i += 3) {
Amat(i, i + 0) -= A * 37.0 / 10.0 / dx;
Amat(i, i + 1) -= A * (-189.0) / 40.0 / dx;
Amat(i, i + 2) -= A * 27.0 / 20.0 / dx;
Amat(i, i + 3) -= A * (-13.0) / 40.0 / dx;
Amat(i + 1, i + 0) -= A * (-189.0) / 40.0 / dx;
Amat(i + 1, i + 1) -= A * 54.0 / 5.0 / dx;
Amat(i + 1, i + 2) -= A * (-297.0) / 40.0 / dx;
Amat(i + 1, i + 3) -= A * 27.0 / 20.0 / dx;
Amat(i + 2, i + 0) -= A * 27.0 / 20.0 / dx;
Amat(i + 2, i + 1) -= A * (-297.0) / 40.0 / dx;
Amat(i + 2, i + 2) -= A * 54.0 / 5.0 / dx;
Amat(i + 2, i + 3) -= A * (-189.0) / 40.0 / dx;
Amat(i + 3, i + 0) -= A * (-13.0) / 40.0 / dx;
Amat(i + 3, i + 1) -= A * 27.0 / 20.0 / dx;
Amat(i + 3, i + 2) -= A * (-189.0) / 40.0 / dx;
Amat(i + 3, i + 3) -= A * 37.0 / 10.0 / dx;
local(3, 0) = 13. * A / (40. * dx) - 7. * B / 80.;
local(3, 1) = -27. * A / (20. * dx) + 3. * B / 10.;
local(3, 2) = 189. * A / (40. * dx) - 57. * B / 80.;
local(3, 3) = -37. * A / (10. * dx) + B / 2.;
Amat(i + 0, i + 0) += B * (-1.0) / 2.0;
Amat(i + 0, i + 1) += B * 57.0 / 80.0;
Amat(i + 0, i + 2) += B * (-3.0) / 10.0;
Amat(i + 0, i + 3) += B * 7.0 / 80.0;
Amat(i + 1, i + 0) += B * (-57.0) / 80.0;
// Локальный вектор нагрузки (4x1)
VectorXd local_load(4);
local_load(0) = -C * dx / 8.;
local_load(1) = -3. * C * dx / 8.;
local_load(2) = -3. * C * dx / 8.;
local_load(3) = -C * dx / 8.;
Amat(i + 1, i + 2) += B * 81.0 / 80.0;
Amat(i + 1, i + 3) += B * (-3.0) / 10;
Amat(i + 2, i + 0) += B * 3.0 / 10.0;
Amat(i + 2, i + 1) += B * (-81.0) / 80.0;
std::cout << "Local matrix:\n" << local << std::endl;
std::cout << "Local load vector:\n" << local_load << std::endl;
// Размер глобальной системы: для кубических элементов (4 узла на элемент, перекрытие по 2 узла)
int ndof = 2 * N + 2;
MatrixXd ansamb = MatrixXd::Zero(ndof, ndof);
VectorXd global_load = VectorXd::Zero(ndof);
// АНСАМБЛИРОВАНИЕ
for (int elem = 0; elem < N; ++elem) {
int node_start = 2 * elem; // Начальный индекс для текущего элемента
// Добавляем локальную матрицу
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 4; ++j) {
ansamb(node_start + i, node_start + j) += local(i, j);
}
Amat(i + 2, i + 3) += B * 57.0 / 80.0;
Amat(i + 3, i + 0) += B * (-7.0) / 80.0;
Amat(i + 3, i + 1) += B * 3.0 / 10.0;
Amat(i + 3, i + 2) += B * (-57.0) / 80.0;
Amat(i + 3, i + 3) += B * 1.0 / 2.0;
}
// Добавляем локальный вектор нагрузки
for (int i = 0; i < 4; ++i) {
global_load(node_start + i) += local_load(i);
}
// Assembdxe vector
for (int i = 0; i < mat_dim - 3; i += 3) {
b(i) -= D * dx / 8.0;
b(i + 1) -= D * 3.0 * dx / 8.0;
b(i + 2) -= D * 3.0 * dx / 8.0;
b(i + 3) -= D * dx / 8.0;
}
std::cout << "Before boundary conditions:" << std::endl;
std::cout << "Ansamb matrix:\n" << ansamb << std::endl;
std::cout << "Ansamb load vector:\n" << global_load << std::endl;
// ГРАНИЧНЫЕ УСЛОВИЯ
double u_left = val1; // u(1) = 5
double u_right = val2; // u(6) = 15
Amat.row(0).setZero();
Amat(0, 0) = dx / 3.0 + 1;
Amat(0, 1) = -1;
b(0) = 0;
ansamb.row(0).setZero();
ansamb.col(0).setZero();
ansamb(0, 0) = 1.0;
global_load(0) = u_left;
ansamb.row(ndof - 1).setZero();
ansamb.col(ndof - 1).setZero();
ansamb(ndof - 1, ndof - 1) = 1.0;
global_load(ndof - 1) = u_right;
std::cout << "\nAfter boundary conditions:" << std::endl;
std::cout << "Modified matrix:\n" << ansamb << std::endl;
std::cout << "Modified load vector:\n" << global_load << std::endl;
Amat.row(mat_dim - 1).setZero();
Amat(mat_dim - 1, mat_dim - 1) = 1;
b(mat_dim - 1) = val2;
// Решение системы
VectorXd solution = ansamb.fullPivLu().solve(global_load);
VectorXd solution = Amat.colPivHouseholderQr().solve(b);
std::cout << "\nSolution:" << std::endl;
std::cout << solution << std::endl;
// Сохранение результатов (берем только значения функции в узлах, шаг 2)
std::ofstream file("matrix_cubic.txt");
for (int i = 0; i < ndof; i += 2) {
for (int i = 0; i < solution.size(); i++) {
file << solution(i) << ' ';
}
file << std::endl;